Synthetic Studies Towards Halichondrins: Synthesis of the Left Half of Halichondrins

Keith R. Buszek, Francis G. Fang, Craig J. Forsyth, Sung Ho Jung, Yoshito Kishi*, Paul M. Scola, Suk Kyoon Yoon

Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

Abstract: An efficient synthesis of the left half of halichondrins B and C is reported.

Marine natural products halichondrins B and C share a common structure on the left side.¹ In this letter, we report an efficient synthesis of the left half of these halichondr

Scheme 1 outlines the synthesis of the C.44-C.54 segment of halichondrin $B¹$. The conjugate addition of methylcuprate to the α, β -unsaturated γ -lactone 1, readily available from L. ascorbic acid,² yielded the single stereoisomer 2 in 95% yield.³ Routine functional group manipulation allowed the transformation of 2 into the epoxide 3 , which was then coupled under Yamaguchi conditions⁴ with the acetylene 4, readily prepared from D-malic acid.⁵ Lindlar reduction of the coupled product gave the cis -olefin 5 in 86% overall yield from 3. The cis olefin 5 was then subjected to Sharpless epoxidation⁶, followed by acid treatments, to yield the expected tetrahydrofuran 6 in 61% overall yield with a $7-8:1$ stereoselectivity. The stcrcosclcctivity of this cpoxidation depended sharply on solvents, with a gcncral trend of aromatic solvents giving more satisfactory results.

Scheme 1. Reagents and Reaction Conditions. (a) 1. Me₂CuLi/TMSCl/THF/-78 °C→RT. (b). 1. LAH/Et₂O/0 °C. 2. PvCl/Py/ CH₂Cl₂/RT. 3. *p*- $McOC_6H_4CH_2-Br$ (MPM-Br)/KH/THF/RT. 4. AcOH-H₂O (4:1)/RT. 5. NaH/THF/RT, followed by treatment with p-TsImd/THF/RT. (c) 1. $4/n$ -BuLi/THF/-78 °C, followed by BF3+Et2O at -78 °C then addition of 3 at -78 °C. 2. H₂/Lindlar catalyst/quinoline/hexanes/RT. (d) 1. t-BuOOH/VO(acac) $2/C_6H_6/RT$. 2. TFA/CH 2 Cl $2/RT$. 3. AcOH-H $2O$ (4:1)/RT.

The C.50 and C.51 stereochemistry of 6 was assigned on the basis of literature precedents known for the stereochemical outcome of this type of epoxidation.⁷ This assignment was further confirmed by degradation of 7^8 to 8 and correlation of 8 with the authentic sample prcparcd via a different **route** (Scheme 2).

Scheme 2. Reagents and Reaction Conditions. (c) 1. $C_6H_5CH_2Br$ (1 equiv)/NaH/THF/RT, and chromatographic separation. 2. Ac₂O/Py/RT. 3. AcOH-H₂O (4:1)/RT. 4. NaIO₄/H₂O-THF (1:1)/RT, followed by NaBH₄/MeOH/0 °C. 5. o- $O_2NC_6H_4SeCN/n-Bu_3P/THF/RT$, followed by 30% H₂O₂/THF/RT treatment¹⁰. 6. O₃/MeOH-CH₂Cl₂/-78 °C, followed by NaBH₄ reduction. 7. K₂CO₃/MeOH/RT. (f) 1. t-BuOOH/(+)-diethyl tartrate/Ti(i- $P_{P}O_{A}/CH_{2}Cl_{2}/-15$ °C¹¹. 2. CSA/THF-H₂O (20:1)/RT.

The synthesis outlined in Scheme 1 was designed to specifically address the stereochemical issue of the C.50-C.54 moiety of halichondrin B. The C.50, C.51 and C.53 stercochemistry of halichondrin B was suggested on the basis of vicinal $1H-1H$ coupling constants, as well as biogenetic considerations,¹ yet there remained some ambiguity. This synthetic route allowed the preparation of all the stereoisomers with respect to the C.50, C.51 and C.53 stereocenters, by using Sharpless⁶ or MCPBA¹² epoxidation of the *cis-* and trans-olefins prcparcd from the acetylcnc 4 and its antipode. Examination of the chemical shifts and vicinal

		10	B ¹ halichondrin
C.50	3.99	4.11	4.00
	(ddd, 9.1, 4.9, 4.2)	(ddd, 9.2, 6.7, 4.5)	(9.0, 4.2, 4.2)
C.51	3.73	3.63	3.78
	(ddd, 8.3, 6.1, 4.9)	(ddd, 8.8, 4.5, 4.1)	(ddd, 8.7, 4.2, 4.2)
C ₅₂	1.70	1.61	1.61
	(dd, 13.9, 6.1, 4.7)	(ddd, 14, 8.8, 7.8)	(ddd, 14.1, 8.7, 8.3)
C.52	1.75	1.66	1.75
	(dd, 13.9, 8.3, 8.0)	(ddd, 14, 5.1, 4.1)	(14.1, 4.2, 4.2)
C.53	3.83	3.86	3.87
		$(ddd, 8.0, 6.2, 4.7, 4.1)$ $(ddd, 7.8, 6.0, 5.1, 4.3)$	(m)
$HO_{\lambda_{\alpha}}$	$_{\circ}$ OH нο, ∿פר c	\sim OH HO. 10 \sim	

Table 1. ¹H NMR data (CD_3OD) of 6, 10, and halichondrin B

spin-spin coupling constants in the ${}^{1}H$ NMR spectra of stereoisomers thus obtained clearly demonstrated that the ${}^{1}H$ NMR data observed for 6 and its diastercomer 10 matched well with the reported values¹ for halichondrin B (Table 1). Therefore, these two stereoisomers were separately brought up to the left half 13^{13} of halichondrins B and C and its corresponding diastercomer (Scheme 3), then to the final products 14

Scheme 3. Reagents and Reaction Conditions. (g) 1. TBSOTf/Et₃N/CH₂Cl₂/RT. 2. same as step b.1. (h) 1. Dess-Martin reagent¹⁶/CH₂Cl₂/RT. 2. 12¹⁵/t-BuLi/Et₂O/-78 °C, followed by treatment with the aldehyde at -78 °C. 3. AgNO₃ (6) equiv)/HMDS (7 equiv)/H₂O-EtOH (1:4)/RT. 4. n-Bu₃SnH/AIBN/toluene/80 °C. 5. I_2 /CH₂Cl₂/RT. 6. same as step h.1.

Acknowledgement. Financial support from the National Institutes of Health (CA-22215) is gratefully acknowledged. We thank the National Institutes of Health for Postdoctoral Fellowships to F.G.F. (CA 08515), C.J.F. (CA 08655), and P.M.S. (GM 13631).

References and Footnotes

- 1. (a) Ucmura, D.; Takahashi, K.; Yamamoto, T.; Katayama, C.; Tanaka, J.; Okumura, Y.; Iiirata, Y. J. *Am. Chem. Sec.* 1985, 107, 4796-4798. (b) Hirata, Y.; Uemura, D. *Pure d; Appl. Chem.* 1986, 58, 701-710.
- 2. Vckcmans, J. A. J. M.; Franken, G. A. M.; Dapperens, C. W. M.; Godefroi, E. F.; Chittcnden, G. J. F. J. Org. Chem. 1988, 53, 627-633.
- 3. Satisfactory spectroscopic data (¹H and ¹³C NMR, HRMS, MS, IR, UV, $(\alpha)_{\text{D}}$) were obtained for all new compounds reported in this paper.
- 4. Yamaguchi, M.; Hirao, 1. *Tetrahedron Left. 1983.24, 391-394.*
- 5. The acetylene 4 was synthesized from D-(+)-malic acid in 4 steps, 1. BH_3 Me₂S/B(OMc)3/THF/0 °C \rightarrow RT, 2. acetone/p-TsOH/RT, 3. Swern oxidation [Omura, K.; Swern, D. *Tetrahedron* 1978, 34, 1651-1660; Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. *Chem.* 1978, 43, 2480-24821, 4. DAMP/t-BuOKflHF/-78 "C [Calvin, E. W.; Hamill, B. I. *J. C. S. Chem. Comm. 1973, 151-152* and J. C. S. *Perkin* 11977, 869.874; Gilbert, J. C.; Wccrasooriya. J. Org. Chem. 1979, 44, 4997-4998], in 25% overall yield.
- 6. (a) Sharpless, K. B.; Michaelson, R. C. *J. Am. Chem. Soc.* 1973, 95, 6136-6137. (b) Tanaka, S.; Yamamoto, H.; Nozaki, H.; Sharpless, K. B.; Michaelson, R. C.; Cutting, J. D. J. *Am. Chem. Sot* 1974, 96, 5254-5255.
- 7. For example, see: (a) Sharpless, K. B.; Verhoeven, T. R. *Aldrichimica Acta* 1979, 12, 63-74. **(b)** Kishi, Y. *Aldrichimica Acra 1980, 13, 23-30.*
- 8. This correlation was carried out on the substrate with $R = TBDPS$. The acctonide 7 was the product at the step corresponding to step d.2 in Scheme 1. Then, 7 (R=TBDPS) was converted to 11 to complete the correlation.
- $9₁$ The cis-olcfin 9 was synthcsizcd from 3 in 4 steps, 1 and 2: same as steps c.1 and c.2 in Scheme 1 with TBSOCH₂C=CH instead of 4, 3. BnBr/NaH/THF/RT, 4. p-TsOH•Py/McOH-CH₂Cl₂ $(1:4)/RT$.
- 10. Sharpless, K. B.; Young, M. W. J. Org. Chem. 1975, 40, 947-949.
- 11. Katsuki, T.; Sharpless, K. B. J. *Am. Chem Sot. 1980, 102, 5974-5976.*
- 12. MCPBA epoxidation of these olefins gave the inverse stereoselectivity of VO(acac) γ catalyzed epoxidation; for example, MCPBA oxidation of 5 in CH₂Cl₂ at RT gave a 3:1 mixture of epoxides. For examples similar to this case, see ref 7.
- 13. ¹H NMR (C₆D₆) of **13**: δ 0.01 (3 H, s), 0.02 (3 H, s), 0.14 (6 H, s), 0.25 (3 H, s), 0.26 (3 H, s), 0.27 $(3 H, s)$, 0.28 $(3 H, s)$, 0.87 $(3 H, d, J = 6.8 Hz)$, 0.96 $(9 H, s)$, 0.98 $(3 H, d, J = 6.8 Hz)$, 1.02 $(9 H,$ s), 1.07 (9 H, s), 1.08 (9 H, s), 1.35 (1 H, br s), 1.58 (1 H, m), 1.76 (1 H, m), 1.91 (I H, m). 1.99 (1 H, m), 2.20 (1 H, dd, $J = 8.7$, 16.7 Hz), 2.29 (1 H, dd, $J = 10.2$, 16.7 Hz), 2.39 (1 H, m), 2.53 (1 H, dd, $J = 4.2$, 16.7 Hz), 2.67 (1 H, m), 2.97 (1 H, dd, $J = 2.2$, 16.7 Hz), 3.10 (1 H, m), 3.30 (1 H, m), 3.32 (3 H, s), 3.69 (1 H, **dd, J = 6.0, 10.3** Hz), **3.76 (1** H, m), **3.80 (I** H. dd, J = 3.5, 10.3 Hz). 3.92 (1 H, m), 4.00 (1 H, m), 4.05 (1 H, d, *J =* 11.5 Hz), 4.26 (1 H, m), 4.35 (1 H, d, *J =* 11.5 Hi), 6.01 (1 H, d, *J =* 14.5 Hz), 6.33 (1 H. dd, *J =* 7.8, 14.5 Hz), 6.79 (2 H, d, *J =* 8.6 Hz), 7.13 (2 H, d, J = 8.6 Hz).
- 14. The total synthesis of halichondrin B from the iodoolefin 13 has recently been complctcd. establishing the complete structure as illustrated.
- IS. The bromide 12 was synthesized from (S)-(+)-methyl 3-hydroxy-2-mcthylpropionatc (Aldrich) in approximately 40% overall yield, in 8 steps: 1. THP protection, 2. LAH reduction, 3. Swern oxidation, 4. LiC \equiv C-TMS, followed by chromatographic separation of two diastcreomers, 5. MPMO(C=NH)CCl3/BF3.Et2O, 6. CSA/McOH, 7. MsCl/Et3N, 8. LiBr.
- 16. Dcss, D. B.; Martin, J. C. *J. Org. Chem.* 1983,48, 4155-4156.

(Received in USA 20 December **1991)**